Integrating Vertex-centric Clustering with Edge-centric Clustering for Meta Path Graph Analysis(KDD15)

> From:Yang Zhou, Ling Liu, David Buttler Reporter:Wenbao Li

Content

- Background
- Related works
- New challenges and Basic idea
- Model description
- Experiment

Background

Heterogeneous information network analysis, especially meta path-based social network analysis has attracted more and more attention.

- What is heterogeneous information network
- Multiple type nodes(objects).
- Multiple type links between different type of nodes.

JUST LIKE THIS

Background

Figure 1: A Heterogeneous Information Network

Wenbao Li

Background

□ What is meta path?

- Utilizing meta-path to improving the quality of the following tasks.
- Similarity search
- Classification
- Clustering(community detection)
- Recommended system
- Link prediction

This work is focusing on the clustering task!

Wenbao Li

Related works

- Meta path-based
- PathSim

presented a meta path-based similarity measure for Hete. gaph

User guided entity similarity search using meta-path selection in hete. information networks.

proposed a meta path-based ranking model to find entities with high similarity to a given query entity.

HCC

is a meta-path based heterogeneous collective classification method

- Meta path-based
- PathSelClus

utilizes user guidance as seeds in some of the clusters to automatically learn the best weights for each meta-path in the **clustering**.

MLI

is a multi-network **link prediction** framework by extracting useful features from multiple meta paths.

Graph clustering

- A spectral clustering approach to optimally combining numericalvectors with a modular network.
- presented a clustering method which integrates numerical vectors with modularity into a **spectral** relaxation problem.
- **SCAN**
- is a **structural** clustering algorithm to detect clusters, hubs and outliers in networks.

Graph clustering

- MLR-MCL
- is a **multi-level graph** clustering algorithm using **flows** to deliver significant improvements in both quality and speed.
- TopGC
- is a fast algorithm to **probabilisticlly** search large, edge weighted, directed graphs for their best clusters in linear time.
- BAGC
- constructs a Bayesian probabilistic model to capture both structural and attribute aspects of graph.

Graph clustering

- GenClus
- proposed a model-based method for clustering hete.
 networks with different link types and different attribute types.
- CGC
- is a multi-domain graph clustering model to utilize crossdomain relationship as co-regularizing penalty to guide the search of consensus clustering structure.
- FocusCO
- solves the problem of finding focused clusters and outliers in large attributed graphs.

New Challenges and Basic ideas

New Challenges——>Basic idea

□Vertex-centric clustering *w.r.t* multiple path graphs

Different meta paths carry different semantics about the same type of entities.

Wenbao Li

New Challenges——>Basic idea

Fine-grained vertex assignment and clustering objective.

Kmeans,K-medoids cannot satisfy.

Kun-Lung Wu	DB	
Bugra Gedik	DB	
Charu C.Aggarwal	DM	
Philip S.Yu	DM	

New Challenges——>Basic idea

Edge-centric clustering w.r.t multiple path graphs

Vertex homophily without edge clustering is insufficient for meta-path graph analysis on hete. networks.
Kun:Lang Wu (18) Charu C. Aggarwal (32)

Wenbao Li

Integrating vertex-centric clustering and edge-centric clustering.

VEPathCluster

- Vertex/Edge-centric meta path graph clustering
- is to simultaneously perform two clustering tasks:
- Edges soft clustering.
- Vertex soft clustering.

Goals:

- Intra-cluster;
- □ Inter-cluster.

VEPathCluster(1) Initialization

□ Given heterogeneous network **G=(V,E)**,**M** meta paths,cluster number **K**.

■ Construct M path graphs VG_m which have adjacent matrix P_m(1≤m≤M) and unify

$$\mathbf{P}^{(1)} = \omega_1^{(1)} \mathbf{P}_1 + \dots + \omega_M^{(1)} \mathbf{P}_M \text{ s.t.} \sum_{m=1}^M \omega_m^{(1)} = 1, \ \omega_1^{(1)}, \dots, \omega_M^{(1)} \ge 0 \quad (1)$$

How to initialize?
and how to update?
Detail in the later section

VEPathCluster(1) Initialization

Initialize the weights $\omega_m^{(1)}(1 \le m \le M)$

$$\omega_1^{(1)} = \frac{1/\max \mathbf{P}_1}{\sum_{m=1}^M 1/\max \mathbf{P}_m}, \dots, \omega_M^{(1)} = \frac{1/\max \mathbf{P}_M}{\sum_{m=1}^M 1/\max \mathbf{P}_m}$$

Then cluster using Fuzzy C-Means(FCM)(just for the first iteration)

$$X_k^{(1)}(i)(v_i \to c_k)$$

VEPathCluster(2) Edge-centric random walk model

□ Convert: $VG_m \rightarrow EG_m$

VEPathCluster(2) Edge-centric random walk model

□ Transition probability on edge-centric path graph. $\begin{bmatrix} Q_m(e_{mi}, e_{mj}) \\ \hline P_{NE_m} Q_m(e_{mi}, e_{mj}) \in E_m \times E_m, \end{bmatrix}$

$$\mathbf{T}_{m}(e_{mi}, e_{mj}) = \begin{cases} \frac{\mathbf{Q}_{m}(e_{mi}, e_{mj})}{\sum_{l=1}^{N_{E_{m}}} \mathbf{Q}_{m}(e_{ml}, e_{mj})}, (e_{mi}, e_{mj}) \in E_{m} \times E_{m}, \\ 0, & otherwise. \end{cases}, \ 1 \le m \le M \end{cases}$$
(2)

Matrix format:

VEPathCluster(3) Clustering-based multigraph model

Construct vertex multigraph VMG_m from VG_m based the edge clustering result Y_m^{t-1} of previous iteration

 $\mathbf{P}_{mk}^{(t)}(v_i, v_j) = \mathbf{P}_m(v_i, v_j) \times \mathbf{Y}_{mk}^{(t-1)}((v_i, v_j)), \ 1 \le m \le M, \ 1 \le k \le K$ (4)

The same as vertex, the edge multigraph

$$\mathbf{Q}_{mk}^{(t)}(e_{mi}, e_{mj}) = \begin{cases} \mathbf{Q}_m(e_{mi}, e_{mj}) \times \mathbf{X}_k^{(t)}(e_{mi} \wedge e_{mj}), & e_{mi} \neq e_{mj}, \\ \mathbf{R}_m(v_a) \times \mathbf{X}_k^{(t)}(v_a) + \mathbf{R}_m(v_b) \times \mathbf{X}_k^{(t)}(v_b), & e_{mi} = e_{mj}. \end{cases}, \quad (5) \\ 1 \le m \le M, \ 1 \le k \le K \end{cases}$$

VEPathCluster(3) Clustering-based multigraph model

Wenbao Li

VEPathCluster(4) Edge-centric clustering

- □ Construct edge multigrap $EG_m \rightarrow EMG_m$ □ Initialization of clustering result based on
 - the vertex graph's initial clustering

$$\mathbf{Y}_{mk}^{(0)}((v_i, v_j)) = \frac{\sqrt{\mathbf{X}_k^{(1)}(v_i) \times \mathbf{X}_k^{(1)}(v_j)}}{\sum_{l=1}^K \sqrt{\mathbf{X}_l^{(1)}(v_i) \times \mathbf{X}_l^{(1)}(v_j)}}, \ 1 \le m \le M, \ 1 \le k \le K \quad (6)$$

$$\square \mathbf{N} \\ \mathbf{T}_{mk}^{(t)}(e_{mi}, e_{mj}) = \begin{cases} \frac{\mathbf{Q}_{mk}^{(t)}(e_{mi}, e_{mj})}{\sum_{l=1}^{N_{E_m}} \mathbf{Q}_{mk}^{(t)}(e_{ml}, e_{mj})}, \mathbf{Q}_{mk}^{(t)}(e_{ml}, e_{mj}) \neq 0, \\ 0, & otherwise. \end{cases}$$

$$1 \le m \le M, \ 1 \le k \le K$$

$$\mathbf{T}_{mk}^{(t)} = \mathbf{Q}_{mk}^{(t)} (\mathbf{D}_{mk}^{-1})^{(t)}, \ 1 \le m_{\text{ViserMao}} \mathbf{1}_{i} \le k \le K$$

$$(8)$$

VEPathCluster(4) Edge-centric clustering

The update of clustering membership matrix for each meta path

Initilization :
$$\mathbf{Y}_{mk} = \mathbf{Y}_{mk}^{(t-1)}$$

Iteration : $\mathbf{Y}_{mk} = \mathbf{T}_{mk}^{(t)} \mathbf{Y}_{mk}$
 $\downarrow converge$ (9)

Normalize

$$\mathbf{Y}_{mk}^{(t)}(e_{mi}) = \frac{\mathbf{Y}_{mk}(e_{mi})}{\sum_{l=1}^{K} \mathbf{Y}_{ml}(e_{mi})}$$
(10)

The last updated edge clustering membership matrix

$$\mathbf{Y}_{m}^{(t)} = \begin{bmatrix} \mathbf{Y}_{m1}^{(t)} & \mathbf{Y}_{m2}^{(t)} & \cdots & \mathbf{Y}_{mK}^{(t)} \end{bmatrix}, \ 1 \le m \le M$$
(11)

VEPathCluster(5) Vertex-centric clustering

 \Box Construct vertex multigraph $VG_m \rightarrow VMG_m$

 $\mathbf{P}_{mk}^{(t)}(v_i, v_j) = \mathbf{P}_m(v_i, v_j) \times \mathbf{Y}_{mk}^{(t-1)}((v_i, v_j)), \ 1 \le m \le M, \ 1 \le k \le K$ (4)

- Cluster membership probability of the first iteration:
- use FCM to get the $X^{(1)}$ (has mentioned in the secton 1)

Unified Model:

$$\mathbf{P}_{1}^{(t)} = \omega_{1}^{(t)} \mathbf{P}_{11}^{(t)} + \omega_{2}^{(t)} \mathbf{P}_{21}^{(t)} + \dots + \omega_{M}^{(t)} \mathbf{P}_{M1}^{(t)}$$

$$\cdots$$

$$\mathbf{P}_{K}^{(t)} = \omega_{1}^{(t)} \mathbf{P}_{1K}^{(t)} + \omega_{2}^{(t)} \mathbf{P}_{2K}^{(t)} + \dots + \omega_{M}^{(t)} \mathbf{P}_{MK}^{(t)}$$

$$s.t. \sum_{m=1}^{M} \omega_{m}^{(t)} = 1, \ \omega_{1}^{(t)}, \cdots, \omega_{M}^{(t)} \ge 0$$

$$\text{Wenbaol Li}$$
(13)

VEPathCluster(5) Vertex-centric clustering

□ New transition probability:

$$\mathbf{S}_{k}^{(t)}(v_{i}, v_{j}) = \begin{cases} \frac{\mathbf{P}_{k}^{(t)}(v_{i}, v_{j})}{\sum_{l=1}^{N_{V_{c}}} \mathbf{P}_{k}^{(t)}(v_{l}, v_{j})}, \mathbf{P}_{k}^{(t)}(v_{i}, v_{j}) \neq 0, \\ 0, & \text{otherwise.} \end{cases}, \ 1 \le k \le K$$
(14)

$$\mathbf{S}_{k}^{(t)} = \mathbf{P}_{k}^{(t)} (\mathbf{D}_{k}^{-1})^{(t)}, \ 1 \le k \le K$$
(15)

The update of clustering membership matrix for each meta path

Initilization : $\mathbf{X}_{k} = \mathbf{X}_{k}^{(t-1)}$ Iteration : $\mathbf{X}_{k} = \mathbf{S}_{k}^{(t)} \mathbf{X}_{k}$ $\mathbf{X}_{k}^{(t)}(v_{i}) = \frac{\mathbf{X}_{k}(v_{i})}{\sum_{l=1}^{K} \mathbf{X}_{l}(v_{i})}$ (17)

$$\mathbf{X}^{(t)} = \begin{bmatrix} \mathbf{X}_1^{(t)} & \mathbf{X}_2^{(t)} & \cdots & \mathbf{X}_K^{(t)} \end{bmatrix}$$
(18)

Wenbao Li

VEPathCluster(6) Clustering with weight learning

- Objective function
- maximize fuzzy intra-cluster similarity^[22,23].
- format:

$$O(\mathbf{X}, \mathbf{Y}_{1}, \cdots, \mathbf{Y}_{M}, \omega_{1}, \cdots, \omega_{M}) = \sum_{i=1}^{N_{V_{c}}} \sum_{j=1}^{N_{V_{c}}} \sum_{k=1}^{K} \mathbf{X}_{k}(v_{i}) \mathbf{X}_{k}(v_{j}) \mathbf{P}_{k}(v_{i}, v_{j})$$

$$+ \sum_{m=1}^{M} \sum_{i=1}^{N_{E_{m}}} \sum_{j=1}^{N_{E_{m}}} \sum_{k=1}^{K} \mathbf{Y}_{mk}(e_{mi}) \mathbf{Y}_{mk}(e_{mj}) \mathbf{Q}_{mk}(e_{mi}, e_{mj})$$

$$\max_{\omega_{1}, \cdots, \omega_{M}} O(\mathbf{X}, \mathbf{Y}_{1}, \cdots, \mathbf{Y}_{M}, \omega_{1}, \cdots, \omega_{M}), \ s.t. \ \sum_{m=1}^{M} \omega_{m} = 1, \ \omega_{1}, \cdots, \omega_{M} \ge 0$$
(19)

VEPathCluster(6) Clustering with weight learning

The above objective function is a fractional function which can be written in $\max_{\omega_1,\cdots,\omega_M} O(\mathbf{X},\mathbf{Y}_1,\cdots,\mathbf{Y}_M,\omega_1,\cdots,\omega_M) = \max_{\omega_1,\cdots,\omega_M} \frac{\sum_{i=1}^p a_i \prod_{j=1}^M (\omega_j)^{b_{ij}}}{\sum_{i=1}^q o_i \prod_{i=1}^M (\omega_i)^{r_{ij}}}$ $a_i, b_{ij}, o_i, r_{ij} \ge 0, b_{ij}, r_{ij} \in \mathbb{Z}, \ s.t. \sum_{m=1}^M \omega_m = 1, \ \omega_1, \cdots, \omega_M \ge 0$ NFPP (20) $\max_{\omega_1,\cdots,\omega_M} \frac{f(\omega_1,\cdots,\omega_M)}{g(\omega_1,\cdots,\omega_M)}, \ s.t. \ \sum_{i=1}^M \omega_m = 1, \ \omega_1,\cdots,\omega_M \ge 0$ (21)PPP $F(\gamma) = \max_{\omega_1, \dots, \omega_M} f(\omega_1, \dots, \omega_M) - \gamma g(\omega_1, \dots, \omega_M), \ s.t. \sum_{m=1}^{m} \omega_m = 1, \ \omega_1, \dots, \omega_M \ge 0$ NPPP (22)

VEPathCluster_Psedo code

Algorithm 1 Vertex/Edge-centric meta PATH graph Clustering

Input: M vertex-centric path graphs VG_m , M edge-centric path graphs EG_m , a clustering number K, and a parameter $\gamma^{(1)}=0$. Output: vertex clustering membership matrix X, M edge clustering membership matrices $\mathbf{Y}_1, \cdots, \mathbf{Y}_M$. 1: Initialize weights $\omega_1^{(1)}, \cdots, \omega_M^{(1)}$ in terms of the scales of edge values in each VG_m; 2: for t=1 to $F(\gamma^{(t)})$ converges to 0 3: if t = 1Combine \mathbf{P}_m of each VG_m into $\mathbf{P}^{(t)}$ of VG with Eq.(1); 4: 5: Invoke FCM to cluster vertices V_{ρ} in VG to generate $\mathbf{X}^{(t)}$ of VG; 6: else Convert \mathbf{P}_m of each VG_m into $\mathbf{P}_{mk}^{(t)}$ of each VMG_m with Eq.(4); 7: Combine each VMG_m into VMG by computing all $\mathbf{P}_k^{(t)}$ in Eq.(13); 8: Calculate $\mathbf{S}_{k}^{(t)}$ of *VMG* for each cluster c_{k} in Eqs.(14)-(15); 9: 10: Update $\mathbf{X}^{(t)}$ of VG with Eqs.(16)-(18); 11: if t = 1Initialize $\mathbf{Y}_{m}^{(t-1)}$ of each EG_{m} with Eq.(6); 12: Convert \mathbf{Q}_m of each EG_m into $\mathbf{Q}_{mk}^{(t)}$ of each EMG_m with Eq.(5); 13: 14: Calculate $\mathbf{T}_{mk}^{(t)}$ of each EMG_m for each cluster c_k in Eqs.(7)-(8); Update $\mathbf{Y}_{m}^{(t)}$ of each EG_{m} with Eqs.(9)-(11); 15: Compute $O(\mathbf{X}, \mathbf{Y}_1, \cdots, \mathbf{Y}_M, \omega_1, \cdots, \omega_M)$ in Eq.(19); 16: 17: Solve $F(\gamma^{(t)})$ in Eq.(22); Update $\omega_1^{(t+1)}, \cdots, \omega_M^{(t+1)};$ 18: Refine $\gamma^{(t+1)} = f(\omega_1^{(t+1)}, \cdots, \omega_M^{(t+1)}) / g(\omega_1^{(t+1)}, \cdots, \omega_M^{(t+1)});$ 19:

20: Return $\mathbf{X}^{(t)}$ and $\mathbf{Y}_1^{(t)}, \cdots, \mathbf{W}_{en}^{(t)}$ bao Li

VEPathCluster_Algorithm Flow

Wenbao Li

- Datasets
- DBLP,IMDb,Yelp

Dataset	#NT	#MP	#Type 1	#Type 2	#Туре 3	#Type 4	Meta path
DBLP	4(A ,P,V,T)	3	112483	728497	2633	45968	A-P-A; A-P-V-P-A; A-P-T-P-A.
IMDb	4(<mark>A</mark> ,M,D,G)	3	48975	31188	4774	28	A-M-A; A-M-D-M-A; A-M-G-M-A.
Yelp	4(<mark>B</mark> ,R,U,T)	2	15715	470212	138969	30475	B-R-U-R-B; B-R-T-R-B.

- Comprison methods
- Fuzzy C-Means
- Gustafson-Kessel
- PathSelClus
- VEPathCluster-VE,VEPathCluster-VW,VEPathCluster-EW
- Measures
- Fuzzy dunn index[0,+Inf]
- Silhouette[-1,1]
- NMI[0,1]

Edge Clustering Quality

Clustering efficiency

Clustering convergence

□ Case study

	Author/Cluster	DB	DM	AI	IR
DB,DM,SN,MMN	Ming-Syan Chen	0.258	0.588	0.021	0.134
IR, DL	W. Bruce Croft	0.058	0.006	0.026	0.909
DM	Christos Faloutsos	0.346	0.539	0.012	0.102
DM	Jiawei Han		0.459	0.057	0.111
Big data,data science,DB	H. V. Jagadish	0.904	0.048	0.014	0.034
DB	Laks V. S. Lakshmanan	0.809	0.128	0.011	0.053
DB	Hector Garcia-Molina	0.810	0.028	0.021	0.141
machine learning,statistic(AI)	Eric P. Xing	0.009	0.123	0.830	0.038
AI,DM	AI,DM Qiang Yang		0.265	0.512	0.210
DM	Philip S. Yu	0.358	0.507	0.027	0.108
DM	Chengqi Zhang	0.023	0.744	0.140	0.093

 Table 1: Cluster Membership Probabilities of Authors Based

 on Three Meta Paths from DBLP

Case study

Path Edge/Cluster	DB	DM	AI	IR
(Ming-Syan Chen, Philip S. Yu)	0.630	0.284	0.023	0.063
(W. Bruce Croft, Hector Garcia-Molina)	0.702	0.035	0.065	0.199
(Christos Faloutsos, H. V. Jagadish)	0.547	0.365	0.017	0.072
(Christos Faloutsos, Eric P. Xing)	0.238	0.713	0.015	0.034
(Jiawei Han, Laks V. S. Lakshmanan)	0.624	0.356	0.006	0.013
(Jiawei Han, Philip S. Yu)	0.518	0.424	0.013	0.045
(Qiang Yang, Philip S. Yu)	0.083	0.785	0.131	0.001
(Qiang Yang, Chengqi Zhang)	0.023	0.684	0.228	0.065

 Table 2: Cluster Membership Probabilities of A-P-A Path

 Edges from DBLP

O G Our plan and exsiting questions

Our plan and exsiting questions

□First, based on the meta-path decomposition method.

Question:

□Then, use a new clustering method such as sync.

- Question1:cluster a whole homogeneous network(how to integrate different networks?)
- how to decide the weights?
- Question2:cluster different networks seperately?(how to integrate the clustering results?)